LIFETIME OF A NARROW CHANNEL IN A LIQUID

I. V. Zuev, N. N. Rarov, UDC 532.5
N. N. Rykalin, and A. A. Uglov

Lifetime determination is considered for a narrow channel in a liquid collapsing in response
to gravitational and capillary forces. Working formulas are derived to relate the lifetime to
the properties of the liquid and the channel parameters. The calculations are compared with
experiments on the effects of a focused high~power electron beam acting on a liquid and solid.

Concentrated heat sources such as electron and laser beams act on condensed media to produce chan-
nels a fraction of a millimeter in diameter; the channel walls are usually liquid, being kept in equilibrium
by the pressure of the vapor generated by the beam. A narrow channel can exist in dynamic equilibrium
for a certain time, but it begins to collapse when the heat source is removed.

An instance of an interesting collapse problem relates to the formation of deep melted zones in metals
exposed to electron beams [1, 2]. Similar problems arise for focused laser beams acting on condensed
materials, and also when one simulates such effect with small gas jets acting on liquids. High-speed cine~
matography has been applied [3] to the formation of narrow cavities in VKZh-94 oil with pulsed and contin-
uous electron beams. Rayleigh [4] discussed the collapse of a spherical cavity suddenly formed in a liquid.
It would seem that no detailed study has previously been made of the collapse of a narrow channel.

Here we consider the hydrodynaraic problem of the motion of an incompressible liquid when a narrow
channel collapses; the liquid may be a molten metal, for example. Here we do not discuss the channel for-
mation mechanism.

The problem is formulated as follows. We have a cylindrical volume of incompressible liquid V, in
which a cylindrical channel of radius Ry and depth H, suddenly appears. We have to determine the time
taken to fill the channel with liguid.

The following are the Navier —Stokes equations, and also the equations for continuity and conservation
of matter in a cylindrical coordinate system with axial symmetry (independence of anglc ¢):
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Here p is density, while vy and v are the radial and axial components of the liquid velocity corre-
spondingly, with K. and Kz the radial and axial components of the volt [orce acting on the liquid and p the
dynamic viscosity.
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We make some simplifying agsumptions and consider the solutions
to particular problems for special cases. The approximations are that
first of all we specify the upper and lower boundaries of the liquid (channel
o compression), with reference to the case of a fixed lateral boundary (liquid
sinking) and flow into the channel (the radial motion of the liquid is ne-
glected).

We consider the case where the upper and lower boundaries (Fig. 1)
are fixed, i.e., the volume is redistributed by shift in the side boundaries
Rj = Rj(t) (I =1, 2); the quantities dependent on z then disappear from the
equations and (1)-(3) takes the form
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The boundary and initial conditions are put in the form

Ty =—P 42000,/ 0r =20,/ R for r= R () (7

Here the plus'sign refers to i =1 and the minus to i =2;
R.2 () — R2(t) = R** — R}, R* =R, (0), Ry = R, (0)
v, =10 for £=20 (8

From Eq. (6) we get vy = r"f(t), where r is the current coordinate [Ry(t) = r < R,(t)]; we integrate Eq.
(5) with respect to r from Ry to R, to get
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We convert to new dimensionless variables via the formula
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where v =p /p, and transform Egs. (7)-(9) to
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The collapse time is found from
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where ¥(¢) is determined from the solution to
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The solution to Eq. (12) cannot be found in general form, so we consider some particular cases; a solution
has beengiven [5] forb=0. We neglectthe viscosity and get from Eqs. (11) and (12) after transformation that

1
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If £<q (narrow channel), we have
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v=VoR?/5 a/SS[ lnH*iRl—-lnx ]‘,‘zxdz (14)

z

The interval of Eg. (14) converges, and the value lies in the range

2V2
3
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Then the collapse time can be estimated from

1=V pR3/sln R* /R, (16)

We insert the numerical values Ry = 10~2¢cm, p=10 g/cm3, R*=1cm, o = 10° dyne/cm characteristic
of narrow channels in molten metals to get 7~ 0.5 msec.

We now consider the case where the side boundary is fixed, while the volume redistribution occurs
by two-dimensional displacement of the upper boundary, i.e., we assume that v,(r, 2, t) = vz(2, t); from Eq.
4) we have

(R*? — R%z = (R*? — Rz, (17
We differentiate Eg. (17) with respect to t to get
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or
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We substitute Eq. (18) into (3) with vy = 0 for r = R* to get
v () = —f (1) (R** — %) /1 (19)

We integrate Eq. (1) with respect to r from R to R* and Eq. (2) with respect to z from 0 to h using Eqs. (18)
and (19) to get a system of ordinary equations:
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Systems (20) and (21) are independent because we have assumed that v, (r, z, t) = va(z, t), which means
that vy and 8vz/9, are independent of z; physically this means that the upper boundary can descend as a
plane only if the forces acting on the liquid in the two mutually perpendiculars r and z are independent. In
fact, vr and vz are coupled only via the cquation of continuity (3) and the analogous law of conservation of
matter (4).

This case splits up into two: a) system (20) correspondsv to channel filling via capillary forces in the
absence of gravity; b) system (21) corresponds to filling by descent of the liquid in the absence of capillary
forces.

Consider case a; we have from (20) that
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‘rz The filling time is found from
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Fig. 2 Equation (24) is analogous to Eq. (14), so
BTy < Ta < ToMg V2 (B + 5/, — 21n 2) (25)

We see from Eqgs. (15) and (25) that 7 for the first case is of the same order as for case a, being de-
pendent on the parameter (pR°/0)¥/2 In (R*/Ry).

We have for case b from Eg. (21) that

df? 2 .
TP =kt [(W)lhen, =0 (26)

The filling time is given as follows by analogy with Eq. (23):
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The solution to Egs. (26) and (27) is

_ gl —R) R/ Tm
f(h)———h_—7 Te= %= ra (28)

We substitute the values Ry = 1072 ¢cm, R* =1 cm, hy = 1 cm into Eg. (28) to get Tg ~0.3 msec. Al-
though the structure of the formulas defining the time of the flow of the channel 7 in response to capillary
and gravitational forces are different, the numerical estimates for typical cases of narrow channels show
that Eqs. (25) and (28) give values of the same order.

The following relation gives approximately the resultant filling time when both forces act together:

=t 4w (29)

This analysis shows that the difference in the collapse models does not lead to a substantial quanti-
tative difference.

We now consgider the filling of a narrow channel by which we mean one whose diameter does not ex-
ceed the capillary constant ¢ = (2a/pg)1/2, in particular ¢¢ = 0.122 ¢m for water, while ¢ ~ 0.5 cm for

molten metals, the filling being in response to gravity and pressure gradient (Fig. 2). We neglect the clo-
sure of the channel in the radial direction due to capillary forces.

The Navier —Stokes equation takes the form
dv, r)vz o,
5’(7*”’ e v )—

We neglect the radial motion, so vy is not dependent on z, as follows from the equation of continuity,
i.e., vz =1 (t); Eq. (30) becomes

&, 1 o0, 3%,
(a,.?. +TT""6—Z§) = —pg (30)
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The channel fills from the bottom as the liquid flows along the walls; the motion is complicated in the
regions z < —H(t} and z > 0 (Fig. 2), so we consider the motion only for the region 0 >z >—H(t), and find the
filling time from the condition of conservational matter. We neglect the dimensions of the part —~H(t) +
R>z >—H(t) as these are small for a narrow channel and neglect the radial motion in the region 0>z > —H(z),
with v, = vz (r, t) to assume that the pressure within the liquid is not dependent on r. The condition at the
free boundary

Ty = —P + 2080,/ 0z=0/1R

gives us for z = —H(t) that P(~H) =—0/R; similarly we find P(0) = ¢/R*, where R is the channel radius in
the lower part, while R* is the mean radius of the liquid in the upper part.

We integrate Eq. (31) with respect to z from 0 to —H to get

_t'»lvi (6‘:1)2 1 61’1)_ 5 (1 L1
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Then the capillary forces act in the same sense as the gravitational forces and behave as though they
were bulk forces with the pressure gradient

oP [0z = (*/ R* 4/ Ryo / H (1)

The law of conservation of mass [Eq. (4)] takes the form

=

*t
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so the equations describing the motion of the liquid take the following form:

R* !
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System (34)-(35) defines the law H = H{(t), which can be used to find T from the condition H=0 for t=7.

Equation {35) has no solution in the general case, but it can be solved intwo limiting cases: high and
low viscosities.

If Re is small, the main part is played by the viscous term, and we can neglect the inertial term; then
Eq. (32) gives

oo, 1 9, pg s 1, t: N
e = [ g e )] = 0 (36)
Then
v, (r, t) = 1/4 (R*‘.‘. - r‘Z)Fl (t) (37)
We substitute Eq. (37) into (33) and integrate with respect to r to get
: J 8Re
SI',(t) dt == m[n—}{(t)] 38)
1]
We differentiate Eq. (38) with respect to t and substitute for Fy(t) to get
PEly s It 4] 8R4l 39
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Then
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The solution to Eg. (40) is
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From Eq. 41) with t =7, H(T) = 0 we get
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The first term in Eq. (42) represents the flow in response to the gravitational forces alone:

Tg = Sul’H, | pg (R** — R*)? 43)

The second térm incorporates the reduction in filling time due to the capillary forces. A numerical
estimate can be made. A narrow channel in a molten metal (v = 10° dyne/cm, u'=5- 10~2 Poise, p =10
g/emd, a? = o/pg = 0.1 cm?, u/og =5-10"% cm - sec) gives Tg~0.1 msec for R =102 ¢cm and R* = 0.1 cm;
the viscosity can have a marked effect on the motion only when Re is small, so the characteristic dimension
R* should be small. The total filling time incorporating the capillary forces is 7~ 0.01 msec, i.e., is less
by an order of magnitude. This time has been underestimated, since it does not incorporate the initial ac-
celeration required for the channel filling rate to reach a steady value.

We incorporate this initial stage by leaving the inertial term and neglecting the viscosity; this approxi-
mation corresponds to the second limiting case (small viscosity).

The equations for the velocity are

dr 5
= e[l P =Fa0) @4
R* ¢t

2§ Sv.onyrdrae= R — 1) (45)
R

0

We cannot satisfy the boundary condition v=0 at r=R* if we neglect the viscosity, but the boundary
layer will be thin if R* is sufficiently large, and it can be neglected for small times.

As vgz(r) =const, we have from Eq. (45) that

Q™

v, (t)dt = WR_—?m)—[Ho — H (t)] 46)
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Then we get the equation for H(t):
&"H |
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The first integral of Eq. (48) takes the form
dH [ dt == —12B, (Hy — H) — 2a, In (H / Hy)l* 49)
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Consequently,

b

v = Bo(Ho— H) — ay In (H | Hy)| " did (50)
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Neglecting the accelerating capillary forces we have

H,

2PH, R 1/2/_10
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The following are some numerical estimates. Let H = 2.5 cm, R = 1072 cm; then T=0.7 msec for R*=
1 cm for a molten metal, and 7T~7 msec for R* = 0.1 cm; in the general case, Eq. (50) can be put as

1
= ;;?T,é I/NT%I’ v = o o= S (52)
We find 75 neglecting the gravitational forces, in this case Eq. (52) becomes
Vgt = H, 5 V—d[\]uv — 2H(,§exp(— Wydv = H, V'
H
Then
R I Vi (53)

For H = 2.6 cm, p=10g/cm® ¢ =10%dyne/cm, R =10"2cm, R* =1 cm we have T; ~0.31 msec, while
v ~3.1 msec [or R* =0.1 cm.

Then Eq. (29) gives us the resultant filling time incorporating gravitational and capillary forces; we
substitute the numerical values from the above example and get 7 0.21 msec.

In estimating 7o we neglected effects related to the boundary layer; the thickness of the boundary
layer is 8 ~ 4Vvi [6]; the numerical values give § ~3 - 1078 cm, and we have [6] for (/R < 5" 1073 that the
thickness of this layer is less than 0.1 R, while over the rest of the region the velocity is independent of .
r, so we can use Egs. (5)-(53) with reasonable accuracy to estimate the corresponding times.

We now consider how far these qualitative estimates agree with experiment; it is stated [3] that the
channel in VKZh-94 oil persists for about 5° 1072 sec in response to a focused electron beam. Our estimates
indicate that the channel in the oil persists longer than one in a molten metal on account of the reduced sur-
face tension. Numerical estimates with the corresponding values inserted in the formula for the collapse
time do not give satisfactory agreement with the experiments of [3] within an order of magnitude. A pos-
sible reason is neglect of the thermal effect accompanying the hydrodynamic ones. The characteristic time
for thermal relaxation is 7y ~R?%/at, where at is the thermal diffusivity, and 7y, is about 1073 sec for R =
1072 ¢m, ag = 0.1 em? sec, i.e., is of the same order as the collapse time. Then vapor can appear within
the channel, which incrcases the collapse time relative to the purely hydrodynamic case. The increase in
collapse time can also be due to energy release in the final stage of the process, which has not been con-
sidered here.
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